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Ion bombardment has been shown to be capable of enhancing the interlayer exchange coupling in a trilayer
system that exhibits giant magnetoresistance. We demonstrate that this phenomenon can be derived from
the phase coherence among scattered paths within the two rough interfaces when their topographies are
correlated. In the case of mild corrugations, our method reproduces the predictions by the proximity force
approximation which does not consider the interference. When the characteristic Fourier conjugate of the
topography becomes large and comparable to the Fermi momentum, interesting new features arise and can only
be captured by our more general approach. Among our findings, the scenario of an enhanced interlayer
exchange coupling due to the interface roughness is explained, along with how it depends on the sample
parameters. An additional channel for the resonant transmission is identified due to extra scattering paths from
the roughness.
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I. INTRODUCTION

Interlayer exchange coupling �IXC� has been studied for
more than 20 years1–6 with applications in phenomena such
as the giant magnetoresistance7,8 �GMR� and the tunneling
magnetoresistance �TMR�. Due to the lack of reliable micro-
scopic theories, the interface roughness �IR� was mostly
treated by the static average4,9,10 which invariably led to a
suppression on IXC. Improvement has been achieved by a
systematic study using the perturbation method.11 We shall
follow up this line of approach with more detailed calcula-
tions and report new information on how to raise the sensi-
tivity of GMR and why an enhancement in coupling is pos-
sible, as has already been observed in ion-bombarded
samples.12

Besides IXC, the Casimir effect between metallic
mirrors13 faces the same complexity because a lot of experi-
ments were performed by using a spherical test body in ad-
dition to the unavoidable corrugations on its surface. This
Casimir force has been measured with high precision which
stimulated the development of more detailed theoretical
treatments of IR. The proximity-force approximation �PFA�,
equivalent to statically averaging over the plane-plane geom-
etry, is the first intuitive theory to be examined by both
experiments14,15 and theories.16 Since the PFA was shown to
work only for mild corrugations,16 Maia Neto et al. general-
ized it by the perturbation theory17–19 to obtain better agree-
ments with the experiments.20,21 Recently, a series of experi-
ments on severe corrugated mirrors, which are outside of the
applicability regime of the PFA, confirm that a scattering
approach such as Maia Neto’s is needed to capture the es-
sence of the nontrivial diffraction effects.22,23

We observe that IXC shares the same physical concept
and mathematical construction as the Casimir effect, which
connection is proved in Appendix. A quick way to convince
oneself of this similarity is by the expression of the Casimir
energy24,25 E between two parallel flat mirrors separated by a
distance D and with area A and reflection coefficient r�k� ,E�

E

A
= Im�

p
�

0

� d�

2�
� d2k�

�2��2 ln�1 − rp
2e2i��2/c2−k�

2D� , �1�

where � is the real frequency, k� is the momentum parallel to
mirrors, and p denotes the transverse electric and magnetic
modes. This bears great resemblance to the IXC energy in a
trilayer system with two metallic layers and a metallic or
insulating spacer4

�E

A
= 2 Im�

−�

EF dE

2�
� d2k�

�2��2 ln�1 − r2e2i�2m��E−V0�−k�
2D� ,

�2�

where k� integration is over the interface Brillouin zone and
m� represents the effective mass of the carrier while the D
now represents the spacer width. One purpose of this work is
to generalize this comparison to include the effects of IR.
However, the physics in trilayers is more versatile because
the spacer exhibits a characteristic length scale, the Fermi
wavelength 1 /kF, compared to which other length scales can
be tuned to give different behavior. These parameters include
the roughness amplitude, corrugation length, and spacer
width. Furthermore, the fact that the spacer can be either
metallic or insulating also enriches the phenomenon caused
by IR.

We apply the perturbation method to calculate IXC in
Sec. II and demonstrate that the predictions are equivalent to
those by PFA in the limit of smooth corrugations in Sec. III.
In Sec. IV, the two interface tomographies in TMR and GMR
are assumed to correlated, with special attention to the inter-
ference effect on IXC. Section V is devoted to study why,
when and how much the IXC can be enhanced by IR. Dis-
cussions and conclusions are arranged in the final Sec. VI,
where improvements over our previous work are explained.
To preserve the conciseness of the main text, a rigorous
proof of the connection between IXC and the Casimir effect
is arranged in Appendix.
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II. PERTURBATION METHOD

In this section, we start by deriving the two-dimensional
scattering states generated by a right-moving plane wave
with momentum �kx ,ky� that interacts with an irregular inter-
face A�y� at x=0. The potential on the left side of A is set to
be higher in energy by V0. The wave functions on the left and
right sides are denoted by ��x ,y� and ��x ,y�, respectively.
The boundary conditions are

��A�y�,y� = ��A�y�,y�

	 ���x,y�
�x

	
x=A�y�

=	 ���x,y�
�x

	
x=A�y�

. �3�

In this work we shall assume that A is much smaller than
both 1 /kx and the major Fourier corrugation wavelength �c
in order to proceed with the perturbative calculations as in
the Casimir effect.18 The scattering states can be obtained by
treating the IR as a perturbation to the smooth interfaces,

��x,y� = �0�x,y� + �
n,qy

aky,qy

�n� e−iqxx+iqyy

��x,y� = �0�x,y� + �
n,qy

bky,qy

�n� eiqx�x+iqyy , �4�

where �0�x ,y� and �0�x ,y� are the unperturbed scattering
states, and the transmitted wave �0�x ,y� carries momentum
�kx� ,ky� and superscript �n� denotes the nth order perturba-
tion. Although the roughness considered here is only along
the y direction and there is no momentum transfer in the z
direction, it is straightforward to extend the theory to two-
dimensional roughness, as is the case in Appendix. For an
elastic scattering, the dispersion relation in Eq. �4� is

E =
kx

2 + ky
2

2m�
+ V0 =

kx�
2 + ky

2

2m�
�5�

=
qx

2 + qy
2

2m�
+ V0 =

qx�
2 + qy

2

2m�
. �6�

Insert Eq. �4� into Eq. �3� and use 
kxA�y�
 and 
kx�A�y�
 as the
perturbation factors to expand Eq. �3�. Retaining up to the
second order, one can show that11

aky,qy

�1� = − i�qx� − qx�tkx,kx�
�ky
A�y�
qy� , �7�

aky,qy

�2� = m�V0
kx� + qx�

qx + qx�
tkx,kx�

�ky
A2�y�
qy�

− 2i
m�V0

qx + qx�
�
qy2

�qy2
A�y�aky,qy2

�1� 
qy� , �8�

where the subscripts ky , qy denotes scatterings from ky to qy
state, and tkx,kx�

is the transmission coefficient for a smooth
interface.

Interlayer exchange coupling in a trilayer system, affected
by the quantum interference among the reflected waves, can
be described by the reflection matrices6

�E

W
= Im�

−�

EF dE

2�2Tr�ln�I − R̂L
−+eiK̂+DR̂R

+−eiK̂−D�� , �9�

where W is the length of the interface, I is the unit matrix,

R̂L
−+ / R̂R

+− are the reflection matrices from the left/right smooth
interfaces.

When the topography AL�y� /AR�y� at the left/right inter-
face is considered, the reflection matrix can be written in
powers of the perturbation

R̂L
−+  R̂L

�0�−+ + R̂L
�1�−+ + R̂L

�2�−+. �10�

The zero-order matrix R̂L
�0�−+ corresponds to a smooth inter-

face and is diagonal in the basis

R̂L
�0�−+ = �

rL;kx,kLx� 0 0 ¯

0 �

0 rL,;qx,qLx�

] �

� , �11�

where rL;kx,kLx�
/rL;qx,qLx�

are the reflection coefficients of mo-
menta kx /qx from the left interface while kLx� /qLx� denotes the
momentum in the left-side layer. Same for the definition of

R̂R
+−.

The first- and second-order matrices is constructed by
Eqs. �7� and �8� as

R̂L
�n�−+ = �

aL;ky,ky

�n�
¯ aL;qy,ky

�n�
¯

] �

aL;ky,qy

�n� aL;qy,qy

�n�

] �

� . �12�

Inserting Eq. �12� into Eq. �9�, we can compute IXC up to
the second order in AL and AR

�E  �E�0� + 	�E�1� + 	�E�2�. �13�

The first-order energy correction will be zero because it is
proportional to the averages �AL� and �AR� which are set to
be zero by construction. The major correction, therefore,
comes from the second order perturbation and can be sepa-
rated into correlation and uncorrelation terms

	�E�2� = 	�Ec
�2� + 	�Euc

�2�, �14�

where

	�Ec
�2�

W
= − 2 Im�

−�

EF dE

2�
� dky

2�
�
qy

�qLx� − qx�


�kRx� − kx�
tL;kx,kLx�

tR;qx,qRx
ei�qx+kx�D

1 − M�k��


�1 +
M�q�� + M�k��

2 − 2M�q��
��ky
AL
qy��qy
AR
ky� ,

�15�
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	�Euc
�2�

W
= 2 Im �

j=L,R
�

−�

EF dE

2�
� dky

2�
2kx

M�k��

1 − M�k��


�kjx� �Aj
2� − �

qy

�qjx� − qx�
�ky
Aj
qy�
2

+ �
qy

qx
M�q��

1 − M�q��

�ky
Aj
qy�
2� , �16�

and

M�k�� = rL;kx,kLx�
rR;kx,kRx� e2ikxD. �17�

Note that these results are general, which will reduce to Eq.
�3� in Ref. 11 when restricted to the double limits of
kF�C�1 and kFD�1, i.e., a wide spacer. The reason is that
kFD�1 allows us to ignore the energy contribution from
higher-order round-trip reflections in Eqs. �15� and �16�

	�Ec
�2�

W
 − 2 Im�

−�

EF dE

2�
� dky

2�
�
qy

�qLx� − qx�


�kRx� − kx�tL;kx,kRx� tR;qx,qRx
ei�qx+kx�D


�ky
AL
qy��qy
AR
ky� , �18�

	�Euc
�2�

W
 2 Im �

j=L,R
�

−�

EF dE

2�
� dky

2�
2kxM�k��


�kjx� �Aj
2� − �

qy

�qjx� − qx�
�ky
Aj
qy�
2� . �19�

In the mean time, kF�C�1 permits us to assume that the
reflected/transmitted momenta q /q� at the interface are not
much different from their values without the roughness.
Then, only the qxkx survives in the brackets and can be
pulled out of the summation to reproduce Eq. �3� in Ref. 11.

III. RESPONSE FUNCTION

For a more systematic study of the IR in IXC, we denote
the Fourier component �ky
Aj
qy� by Hj�qy −ky� and all terms
in Eqs. �15� and �16� are proportional to

Hj�qy − ky�Hl�ky − qy� .

For simplicity, assume that the two-side layers are made of
the same material and so the index j may be omitted in the
scattering coefficients. Then, after changing the integration
variable from qy into Py =qy −ky, we can rewrite Eq. �15� as

	�Ec
�2�

W
= �

Py

Gc�Py�HL�Py�HR�− Py� , �20�

where

Gc�Py� = − 2 Im�
−�

EF dE

2�
� dky

2�
4kxqx



�M�k��M�q��

1 − M�k��
�1 +

1

2

M�q�� + M�k��
1 − M�q��

� . �21�

Similarly, Eq. �16� becomes

	�Euc
�2�

W
= �

j,Py

Guc�Py�Hj�Py�Hj�− Py� , �22�

where

Guc�Py� = 2 Im�
−�

EF dE

2�
� dky

2�
2kx



M�k��

1 − M�k��
�kx� − qx� +

qx

1 − M�q��� �23�

and

M�k�� = rkx,kx�
2 e2ikxD, �24�

and the momenta qx and qx� are functions of qy = Py +ky. The
Py in G�Py� signifies the momentum transfer induced by a
given Fourier component of the interface profile. The re-
sponse function G�Py� is determined by the reflection coef-
ficients, momenta and the exponential factors from the
round-trip propagations between interfaces.

The study in the Casimir effect concluded18 that the per-
turbation method would become equivalent to PFA in the
limit of long corrugation wavelengths. We shall prove in the
following that this statement remains true for IXC. By use of
the relation G�Py�=G�−Py� implied by Eqs. �21� and �23�
and taking the limit Py→0, the sum of Eqs. �20� and �22�
becomes

	�E�2�

W
 Im�

−�

EF dE

2�
� dky

2�
4kx

2 M�k��

�1 − M�k���2


�
Py


HL�Py� − HR�Py�
2, �25�

where the summation can be carried out to give

�
Py


HL�Py� − HR�Py�
2 = ��AL�y� − AR�y��2� . �26�

Summarizing the above calculations, IR introduces a shift
to the coupling energy �E�0� in Eq. �2� for interfaces with
mild corrugations

	�E�2�

W


1

2
��AL�y� − AR�y��2�

d2��E�0�/W�
dD2 �27�

under the limit of A�2� /kF��C. Note that Eq. �27� is of
the form of PFA which Taylor expands the variation
AL�y�−AR�y� to the second order for the coupling energy.
This demonstrates that Eqs. �20� and �22� are more general
than PFA since they do not require kF�C�1. In the special
case of AL�y�=AR�y��0, our method can still capture the
effects of IR while PFA predicts none.

In the next section, we apply our method to real systems
where kF�C is not necessarily large, and concentrate on the
effect of correlation term Eqs. �20� and �21�. Discrepancies
between our results and those of PFA will be highlighted.
The propagation term will be shown to display interesting
features from the quantum interference for GMR. By in-
creasing the potential barrier V0 of the spacer above EF, our
previous results can be applied to TMR. That turns the
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propagation term into a decaying function of the spacer
width and the mathematical form of Eq. �20� through Eq.
�23� shall bear more resemblance to those of the Casimir
effect.18,19

IV. CORRELATED INTERFACES

Let us start from simple sinusoidal functions for the cor-
rugation on two correlated interfaces

AL�y� = aL cos�py� ,

AR�y� = aR cos�p�y + b�� , �28�

where p=2� /�c. The energy correction thus depends on the
lateral mismatch b. Plugging Eq. �28� into Eq. �20� gives

	�Ec
�2�

W
=

aLaR

2
cos�pb�Gc�p� . �29�

Similar to the procedures from Eq. �25� to Eq. �27�, Eq. �29�
can be turned into the PFA form in the limit of p→0 and

Gc�p → 0� = −
d2��E�0�/W�

dD2 . �30�

Equation �29� implies the correlation energy correction
can be modulated by a sinusoidal function of the phase dif-
ference between the two interfaces. Since the uncorrelation
term does not depend on the phase difference, the response
function Gc�p� for the correlation term can be measured by
substracting the coupling energy in Eq. �13� for in-phase case
from that for out-of-phase. In the next two subsections, we
shall use the sensitivity function

c�p� =
Gc�p�
Gc�0�

�31�

to quantify the discrepancy between our results and the PFA
ones.

A. TMR

The sensitivity function c for a typical TMR system is
plotted in Fig. 1 as a function of p /kF for different values of
spacer width D.

The c in this figure exhibits three traits: �1� it never ex-
ceeds unity which implies that the PFA always overestimates
the correlation effect for TMR; �2� it approaches unity at
small p /kF when our method reduces to the PFA; �3� it de-
cays exponentially to zero when p /kF becomes large, which
is corroborated by our analytic derivations for the asymptotic
form of Gc�p�=�pe−pD at p /kF�1 by Taylor expanding Eq.
�21�. The parameter � depends on EF and V0. These features
are shared by the Casimir effect19 because of their similar
mathematical formalism.

B. GMR

As we reduce the potential barrier to V0 /EF=0.5, the sys-
tem enters the GMR regime. The results are plotted in Fig. 2.
Comparing to Fig. 1 for the TMR, the sensitivity function
becomes oscillatory and can be negative in certain ranges of
p. The period of oscillation shortens as the spacer gets
thicker because the spacer width D is multiplied to the cor-
rugation period p in the phase term. Furthermore, c can now
exceeds unity which is a necessary condition for the signifi-
cant enhancement of IXC by IR.11 Detail derivations for the
enhancement and this statement are arranged in the follow-
ing section.

If the spacer potential is changed into a well, the emerging
bound states is expected to have a limiting role at mediating
IXC since their probability decay exponentially into the me-
tallic side layers. This is indeed true for smooth interfaces.
However, in the presence of IR, the new eigenstates are a
mixture of both scattering and bound states. And, according
to Eq. �24�, the bound states can contribute and render the
denominator, 1−M�q��, in Eq. �33� vanishing. So it is ex-
pected to generate new features in IXC. We divide the re-
sponse function at Eq. �21� into two terms

G�1�
c �Py� = − 2 Im�

−�

EF dE

2�
� dky

2�
4kxqx

�M�k��M�q��

1 − M�k��
�32�

G�2�
c �Py� = − 2 Im�

−�

EF � dE

2�
�� dky

2�
4kxqx

�M�k��M�q��

1 − M�k��



1

2

M�q�� + M�k��
1 − M�q��

. �33�

The first term is plotted in Fig. 3�a�, which represents the

0.2 0.6 1.0 1.4

0.2

0.4

0.6

0.8

1.0

0.0

p/kF

c
ρ

FIG. 1. �Color online� Sensitivity function c is plotted as a
function of p /kF for V0 /EF=2 and kFD=3 �in dotted line�, 7
�dashed line�, and 10 �solid line�.

0.2 0.6 1.0 1.4

-0.5

0.5

1.0

p/kF

c
ρ

FIG. 2. �Color online� Variation of c as a function of p /kF for
V0 /EF=0.5 and kFD=3 �in dotted line�, 7 �dashed line�, and 10
�solid line�.
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contribution from the paths that are scattered to momentum q�
in the beginning and then reflected to the original momentum
k�. The second term, as shown in Fig. 3�b� and is directly
related to the additional resonance transmission, represents
the contribution from the remaining paths that are transmit-
ted in momentum q� for more than one loop before being
reflected to k�. To clarify the dissimilarity of these two terms,
we calculated a well system in Fig. 4 and show the magni-
tudes of the first term, second term, and the total value of the
response function. Again, the response function is divided by
Gc�0� in the figure. Because the well system for a trilayer
exhibits two bound states which generate two singularities in
the integral of Eq. �33� for resonance transmissions, the sec-
ond term of the response function displays two kinks as we
modulate the corrugation period.

Although we use a perturbative method for the calculation
of IXC energy between rough interfaces, the result of correc-
tion in GMR system still present unusual characteristics from
the quantum interference and the resonance states. The PFA
is not relevant to this regime.

V. ENHANCEMENT OF IXC

Equation �13� consists of two parts, correlation term in
Eq. �15� and uncorrelated one in Eq. �16�. By use of Eq. �27�
from PFA, IXC for mildly corrugated interfaces can be ex-
pressed as

�E  �E�0� − �AL�y�AR�y��
d2�E�0�

dD2 +
1

2
�AL

2�y�

+ AR
2�y��

d2�E�0�

dD2 , �34�

where the AL/R and D are the same definitions as in previous
sections. Since �E�0� for GMR is an oscillatory function of
the spacer width D, it shares the same sign as the negative of
its second derivative for kFD�1. As a result, the second
term always strengthens IXC, while the third term dimin-
ishes it. An overall enhancement of the coupling strength is
realized when the correlation term dominates. However, this
is not possible in the above PFA expression for mild corru-
gations. The sum of these two terms can never be positive
and, at most, cancel each other to give null contribution
when the topography on both interfaces happen to be unre-
alistically identical. Therefore, it is safe to say that the IR
also suppresses IXC within the second-order perturbation of
PFA.

We shall now demonstrate that more severe corrugations,
A�2� /kF��c, and correlated topographies are two
essential ingredients to enhance IXC. The former requires us
to improve upon the PFA within the second-order
perturbation, while the latter brings in strong quantum
interference. To clarify this statement, we use our method
to estimate the coupling strength for the 2D trilayer
system with V0 /EF=−0.2 and identical topography
A�y�=1 / �2kF�sin�kFy /2� on both interfaces. As shown in
Fig. 5, the effect of correlated and severe corrugations can
improve IXC for smooth interfaces by as much as one and a
half times.

It is heuristic to approximate d2�E�0� /dD2 by −4kF
2E�0�

when kFD�1 since IXC for two identical interfaces with
topography A�y� can be neatly reduced to

�E�p�  �E�0��1 + 4�c − uc�kF
2�A�y�2�� . �35�

It is then clear that an enhancement in IXC is being caused
by the dominance of the correlation sensitivity function over
the uncorrelation one, which can be realized for a wide range
of p /kF in Fig. 6. The largest enhancement appears around
p=0.22kF, which is about two times that for smooth inter-
faces. We checked that Eq. �35� gave roughly the same value
as that without the approximation, 1.4 and 1.5 respectively
for the topography and parameter in Fig. 5.

= + +

(a) (b)

(c)

FIG. 3. �Color online� Diagrams for the scattering paths in �a�
the first and �b� second terms of the response function in Eqs. �32�
and �33�, respectively. The thick/thin lines denote the paths with
momenta q� /k�. �c� The dashed line denotes the path which is con-
tributed by the thin line with any number of loops.

0.05 0.10 0.15 0.20

1.0

-1.0

-2.0

p/kF

c
ρ

FIG. 4. �Color online� Variation of c versus b /kF with
V0 /EF=−0.2, kFD=3 and for Eq. �32� �dashed line�, Eq. �33�
�thick line� and their sum �thin line�.

2.0

-2.0

-4.0

-6.0

4 6 8 10

kFD

∆E
[

]
E
F

/W
F

10
-6

λ /

FIG. 5. �Color online� Coupling strength is plotted as a function
of kFD for two interfaces that share the same topography A�y�
=1 / �2kF�sin�kFy /2� with V0 /EF=−0.2. The result for smooth inter-
faces is shown in the dashed line for comparison.
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We have demonstrated that our approach is more general
than the PFA at capturing the effect of quantum interference
among different reflected paths of carriers within the spacer.
This allows us to obtain the enhancement of IXC when p is
comparable to kF. It is then reasonable to ask what happens
when the characteristic corrugation p is much greater than
kF. It turns out that the momentum change along the surface
of the interfaces, being of order p, is so large that the longi-
tudinal momentum becomes pure imaginary during elastic
collisions. This means that these paths only survive a short
distance in the x direction and, therefore, are not expected to
lead to major interference. To be more rigorous, if we ap-
proximate the additional scattering momenta qx , qx� due to
IR by ip and insert into Eqs. �21� and �23�, the sensitivity
function for correlation term will decay as pe−pD while the
uncorrelation one remains roughly a constant. In retrospect,
the process of allowing different reflected paths of carriers to
interfere is similar to that of localization but the eventual
effect is different. In this case of IXC, although the second
term in Eq. �35� contains the second power of the small
perturbation parameter kFA, the quantum interference is still
capable of rendering this term large via the other factor,
c−uc.

VI. DISCUSSIONS AND CONCLUSIONS

Our perturbative approach to evaluate the effects of inter-
face roughness in the trilayers was motivated by a similar
effort in the Casimir problem. To be precise, the role of
interface roughness at causing interference among reflected
electromagnetic waves within the cavity finds a better anal-
ogy in TMR, rather than GMR. Reason being that the decay-
ing nature of carrier wave functions in TMR limits their
quantum interference within the spacer, while the fact that
virtual photons lack a characteristic length scale like the in-
verse of Fermi momentum 1 /kF dilutes any possible con-
structive interference after all wavelengths are summed over.
In contrast, the quantum interference survives and has a non-
negligible effect on GMR when the characteristic wave-
length of corrugations is shared by both interfaces and com-
parable to 1 /kF.

Compared to our previous study,11 a couple of improve-
ments have been made in this work. First, although both
calculations retained up to the second order in the corruga-
tion amplitude A�y�, we included more loops of multiple

scattering from the smooth part of the interfaces. Further-
more, A�y� was no longer confined to be of the sinusoidal
form. Second, an analogy to the Casimir effect was made,
which allowed us to borrow the concept of response and
sensitivity functions as indicators of the extent of influence
by A�y� without having to know its detailed form. We fol-
lowed up by more discussions on similar and different effects
of A�y� in trilayers and the Casimir mirrors. Third, more
thorough derivations were done to compare our approach
with the prevailing proximity-force approximation for differ-
ent periods of corrugations. This enabled a better quantitative
estimate of the enhancement from quantum interference.

In conclusion, we find that the perturbative approach
reaches the same conclusions as the proximity-force approxi-
mation in the limit of p�kF. Namely, mild corrugations lead
to a suppression of the interference and thus the interlayer
exchange coupling. Correlated roughness with short wave-
lengths gives rise to several interesting features: �1� the en-
ergy correction oscillates as we vary the corrugation wave-
length. �2� The magnitude of correction can be larger than
the prediction made by the proximity-force approximation.
�3� While they are expected by the proximity-force approxi-
mation to be irrelevant to the transmission coefficient, the
bound states within the spacers are found to affect the reso-
nance transmission through several kinks in the energy cor-
rection. One last important feature concerns the enhancement
of interlayer exchange coupling by the interface roughness.
Its occurrence relies on further requirement that the Fourier
conjugates alluded to above be close to the Fermi momen-
tum.
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APPENDIX: CONNECTION BETWEEN THE CASIMIR
EFFECT AND IXC

In this appendix, we would like to extend the concept of
radiation pressure in the Casimir effect to the IXC problem.
We start from the Casimir energy which is the summation of
zero-point energies for quantum states in the presence of
boundaries

E =
1

2�
n

�n − Er, �A1�

where n and �n denote the nth bound state with frequency
�n. The Er is the reference energy without the boundary.26 In
contrast, the IXC energy measures the increase in the total
carrier energy when considering the boundaries

�E = �
n

N

En − Er, �A2�

where N is total number of carriers.

1. Radiation force in one dimension

To clarity the connection between these two energies, we
now start from the radiation force of fields in a one-

1.8

1.4

1.0
0.2 0.6 1.0

ρ

p/kF

FIG. 6. �Color online� Setting the corrugation function A�y� to
observe the sinusoidal form, sin py, the correlation c �solid line�
and uncorrelation sensitivity functions uc �dashed line� are plotted
as a function of p /kF for V0 /EF=−0.2 and kFD=2.2.
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dimensional potential well with width D. The eigenstates of
carriers in a quantum well can be written as a combination of
two traveling waves in opposite directions

� 2

D
sin�knx� = − i� 1

2D
�eiknx − e−iknx� =

1
�2D

�en� C + en� C� ,

�A3�

where kn=n� /D is the quantized momentum and the right/
left-moving traveling waves are replaced by the mode opera-
tors, en� C and en� C.

The radiation force measures the impetus per unit time
contributed by the carriers in the cavity

�F�D� = �
n

N
�pn

�tn

1

2
�en� C · en� C

† + en� C · en� C
† �

= �
n

N
kn

2D/vn
�en� C · en� C

† + en� C · en� C
† �

= �
n

N
En

D
�en� C · en� C

† + en� C · en� C
† � , �A4�

where vn=kn /m and m denotes the carrier mass. The IXC
energy can be evaluated by

�E = − �
�

D

dD��F�D�� = �
n

N
1

2
En�en� C · en� C

† + en� C · en� C
† � − Er.

�A5�

It is not surprising that the above expression reduces to Eq.
�A2� upon assigning �en� C·en� C

† �= �en� C·en� C
† �=1.

Similar derivations for the vaccuum states give

F = �
n

�n

2D
�en� C · en� C

† + en� C · en� C
† �vac �A6�

and

E = �
n

�n

2
�en� C · en� C

† + en� C · en� C
† �vac − Er =

1

2�
n

�n − Er,

�A7�

where the extra coefficient 1/2 comes from the fact that the
quantum amplitude for the vaccuum state is just one half of
the corresponding commutator from photon operators.25

2. Radiation force in three dimensions

We generalize the result in Eq. �A4� to estimate the radia-
tion force in a three-dimensional trilayer system in Fig. 7.

�FL�D� = �
k

kF Ek

Lx


cos2 ��ek� C · ek� C
† + ek� C · ek� C

† − ek� L · ek� L
† − ek� L · ek� L

†�

= − �FR�D� , �A8�

where L /R denote the fields in the left/right sides of the

trilayer and Lx is the system length in x direction. The extra
factor cos2 � comes from projections of the momenta and
velocities on the normal direction of interfaces. Take the con-
tinuum limit and the summation can be changed to an inte-
gral

�
k

kF

= A� d2k�

�2��2Lx
dkx

2�
= A�

IBZ

d2k�

�2��2Lx�
0

EF dE

2�

m

kx
.

�A9�

where A=LyLz and the notation IBZ signalizes the range of
integral to be bounded by the interfacial Brillouin zone. The
amplitude of quantum fields can be obtained from the scat-
tering states in the trilayer system

�k,��r�� = �eikxx+ik�
� ·r�� + R�e−ikxx+ik�

� ·r�� , left − side

C�eikxx+ik�
� ·r�� + D�e−ikxx+ik�

� ·r�� , spacer

T�eikxx+ik�
� ·r�� , right − side

� ,

�A10�

where � denotes the moving direction of the scattering state.
The left-moving one �k,� can be defined similarly. Since
these two states are orthogonal, their contributions to the
inner product of field amplitudes can be separated

�ek� C · ek� C
† � = �

�=�,�

C�
2. �A11�

Based on the above discussions and the relations
T�=T�, 
R�
2+ 
T�
2=1, the quantum radiation force in Eq.
�A8� can be rearranged as

�FL�D�
A

= �
0

EF dE

2�
�

IBZ

d2k�

�2��2kx


� �
�=�,�

�
C�
2 + 
D�
2� − 2� , �A12�

where 
C�
2 and 
D�
2 are functions of �TL ,TR ,RL ,RR� which
denote the transmission and reflection coefficients at each of
the barriers in Fig. 7. Equation �A12� will become

L R x

y

eC

eCeL eR

eL eR

FIG. 7. Schematic plot of a trilayer system to clarify our nota-
tions: L /R denote the fields in the left/right sides of the spacer,
whereas C represents those in the spacer.
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�FL�D�
A

= − �
0

EF dE

2�
�

IBZ

d2k�

�2��2kx


�2 −

TL
2 + 
RLTReikxD
2 + 
TR
2 + 
RRTLeikxD
2


1 − RLRRe2ikxD
2 �
= 4 Re�

0

EF dE

2�
�

IBZ

d2k�

�2��2kx
RLRRe2ikxD

1 − RLRRe2ikxD . �A13�

We can also calculate the IXC energy:

�E

A
= 2 Im�

0

EF dE

2�
�

IBZ

d2k�

�2��2 ln�1 − RLRRe2ikxD� .

�A14�

Equation �A14�, which has been proved in Ref. 6 by using
the concept of quantum interference and Green’s function, is
commonly used in the study of IXC.

In the Casimir problem, we follow the same procedures
for the vaccuum state in Eq. �A7� to obtain

FL

A
= 2 Re�

p
�

0

� d�

2�
� d2k�

�2��2kx
RLRRe2ikxD

1 − RLRRe2ikxD ,

�A15�

E

A
= Im�

p
�

0

� d�

2�
� d2k�

�2��2 ln�1 − RLRRe2ikxD� , �A16�

where p denotes the transverse electric and magnetic modes.
By use of the Cauchy theorem, we can shift the integration to
the imaginary frequency axis and rewrite the Casimir force
in Eq. �A15� and energy in Eq. �A16� as

FL

A
= 2�

p
�

0

� d�

2�
� d2k�

�2��2�
RLRRe−2�D

1 − RLRRe−2�D , �A17�

E

A
= �

p
�

0

� d�

2�
� d2k�

�2��2 ln�1 − RLRRe−2�D� , �A18�

where �=�k�
2+�2 /c2. Equations �A17� and �A18� are the fa-

miliar formulas for lossy optical cavities. A previous article25

has used the vaccuum radiation pressure to derive Eq. �A17�.
Although similar in concepts to theirs, our derivations to
relate the IXC and the Casimir energy are more straightfor-
ward. One qualitative difference is that the upper bound of
energy integration in IXC is bound by the Fermi energy
which energy scale eventually renders the IXC force oscilla-
tory in 2kFD.
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